ترکیب دوگانه سیستم استنتاج فازی با الگوریتم بهینه‌‌سازی ازدحام ذرات در پیش‌بینی قیمت سهام بورس اوراق بهادار تهران و مقایسه آن با مدل یادگیری عمیق

  • نویسندگان: مجید عبدالرزاق نژاد, مهدی خرد
  • کلمات کلیدی: پیش‌بینی قیمت سهام، سیستم استنتاج فازی، یادگیری عمیق، شبکه عصبی و الگوریتم بهینه‌‌سازی ازدحام ذرات

پیش‌بینی قیمت سهام توسط تحلیلگران داده یک فرصت تجاری بزرگ را برای طیف گسترده سرمایه گذاران در بازار سهام ایجاد کرده است. اما این مهم به دلیل ماهیت بی ثبات و پویایی بیش از حد عوامل متعدد اقتصادی تاثیرگذار بر بازار سهام، امری دشوار است. در این پژوهش به منظور شناسایی ارتباط پیچیده 10 متغیر اقتصادی بر قیمت سهام شرکت‌های فعال در بازار سهام تهران، دو مدل طراحی و پیاده‌سازی شده است. نخست یک سیستم استنتاج فازی ممدانی که مجموعه قوانین موتور استنتاج خود را توسط الگوریتم بهینه‌سازی ازدحام ذرات بدست می‌آورد طراحی می‌شود. سپس مدل یادگیری عمیق مشتمل بر 26 نرون در 5 لایه پنهان طراحی شده است. مدل‌های طراحی شده به منظور پیش‌بینی قیمت سهام نه شرکت فعال در بورس اوراق بهادار تهران پیاده‌سازی و نتایج بدست آمده حاکی از عملکرد بهتر مدل یادگیری عمیق بر مدل ترکیب دوگانه استنتاج فازی-ازدحام ذرات و نیز مدل رایج شبکه عصبی دارد. اما قدرت تفسیرپذیری الگوی بدست آمده، رفتار همسانتر و با واریانس به مراتب کمتر و نیز سرعت همگرایی بیشتر نسبت به سایر مدل‌ها را می‌توان از مزایای رقابتی قابل توجه مدل ترکیب دوگانه استنتاج فازی-ازدحام ذرات نام برد

پیوند مجله / همایش

نرم افزار همراه دانشگاه بزرگمهر

مشاهده ی اخبار و ارائه خدمات آموزشی، دانشجوئی و رفاهی به دانشجویان و اساتید دانشگاه بزرگمهر قائنات از طریق نرم افزار تلفن همراه